If f(x) = 2x + 1 and g(x) = (x - 1)/2 , then f(g(x))
Solution:
Given, f(x) = 2x + 1
g(x) = (x - 1)/2
We have to find f(g(x))
f(g(x)) = f((x - 1)/2)
= 2[(x - 1)/2] + 1
= 2x/2 - 2/2 + 1
= x - 1 + 1
= x
Therefore, f(g(x)) = x.
Example: If f(x) = 3x + 1 and g(x) = x - 1 , then f(g(x)) =
Solution:
Given, f(x) = 3x + 1
g(x) = x - 1
We have to find f(g(x))
f(g(x)) = f((x - 1)
= 3[(x - 1)] + 1
= 3x - 3 + 1
= 3x - 2
Therefore, f(g(x)) = 3x - 2.
If f(x) = 2x + 1 and g(x) = (x - 1)/2 , then f(g(x))
Summary:
If f(x) = 2x + 1 and g(x) = (x - 1)/2, then f(g(x)) is x.
Math worksheets and
visual curriculum
visual curriculum