If f(x) = x2 + 1 and g(x) = x - 4, which value is equivalent to (f*g)(10)?
37, 97, 126, 606
Solution:
Given:
Function f(x) = x2 + 1 and g(x) = x - 4
⇒ f*q (x) = f[g(x)]
⇒ f*q (x) = f(x - 4)
But f(x) = x2 + 1
⇒ f*g (x) = (x - 4)2 + 1
⇒ f*g (x) = x2 - 8x + 16 +1
⇒ f*g (x) = x2 - 8x + 17.
⇒ f*g (10) = 102 - 8(10) + 17
⇒ f*g (10) = 100 - 80 +17
⇒ f*g (10) = 37
Hence, the required value is 37.
If f(x) = x2 + 1 and g(x) = x - 4, which value is equivalent to (f*g)(10)?
Summary:
If f(x) = x2 + 1 and g(x) = x - 4, then (f*g)(10) = 37
Math worksheets and
visual curriculum
visual curriculum