If f (x) = x-1/x+1 then find the value of f (2x)?
Solution:
A function gives a relationship between an input and output variable where the output is dependent upon the input.
Let's look into the steps below
ƒ(x) = ( x - 1 ) / ( x + 1 )
By cross multiplication,
⇒ ( x + 1 ). ƒ(x) = x - 1
⇒ x ƒ(x) + ƒ(x) = x - 1
⇒ x ƒ(x) - x = - 1 - ƒ(x)
⇒ x [ ƒ(x) - 1 ] = - [ 1 + ƒ(x) ]
⇒ x = [ 1 + ƒ(x) ] / [ 1 - ƒ(x) ] ----------------- (1)
Now, let's evaluate ƒ(2x)
ƒ(2x) = [ (2x) - 1 ] / [ (2x) + 1 ] ------------------ (2)
Substituting the value of x from (1) in (2) we get,
= { 2( [1+ƒ(x)] / [1-ƒ(x)] ) - 1 } / { 2( [1+ƒ(x)] / [1-ƒ(x)] ) + 1 }
= { 2[ 1 + ƒ(x) ] - [ 1 - ƒ(x) ] } / { 2[ 1 + ƒ(x) ] + [ 1 - ƒ(x) ] }
= { 2 + 2 ƒ(x) - 1 + ƒ(x) } / { 2 + 2 ƒ(x) + 1 - ƒ(x) }
= [ 1 + 3 ƒ(x) ] / [ 3 + ƒ(x) ]
Thus, the value of f (2x) is [ 1 + 3 ƒ(x) ] / [ 3 + ƒ(x) ]
If f (x) = x-1/x+1 then find the value of f (2x)?
Summary:
If f (x) = x-1/x+1 then the value of f (2x) is [ 1 + 3 ƒ(x) ] / [ 3 + ƒ(x) ]
visual curriculum