How to prove cot (A + B) = (cot A × cot B - 1) / (cot A + cot B)?
We will make use of trigonometric identities to prove this result.
Answer: Cot(A+B) =(cotAcotB-1) / (cotA+cotB) can be proved using trigonometric conversions from a cot function into cosine and sine function.
Explanation:
Given below is the step-by-step proof of the above-mentioned problem.
Consider LHS, cot (A + B) = cos (A + B) / sin (A + B) ---- (1)
using the sine and cosine addition formula
cos(A+B) = cosAcosB-sinA sinB and
sin(A+B) = sinAcosB +cosAsinB
substituting in equation (1) we have
cot (A + B) = (cos A × cos B − sin A × sin B) / (sin A × cos B + cos A × sin B)
Now divide the terms on both numerator and denominator by sin A × sin B. we get
[ (cos A × cos B − sin A × sin B) / (sin A × cos B + cos A × sin B) ] × [sin A × sin B / sin A × sin B]
= [cos A × cos B/ sin A × sin B - sin A × sin B / sin A × sin B] / [sin A × cos B/ [sin A × sin B + cos A × sin B / sin A × sin B ]
= [cosA/sinA × cosB/sinB - 1 ] / [cos B / sin B + cos A/sin A] [∵cosθ/sinθ = cotθ]
= (cot A cot B - 1) / (cot B + cot A) [∵cosθ/sinθ = cotθ]
= RHS
Hence Proved that cot (A + B) = (cot A × cot B - 1) / (cot A + cot B).
visual curriculum