How to integrate (ln x)2?
To find Integration of (ln x)2, we will use integration by parts method.
Answer: The final integral of (ln x)2 is x (ln x)2 − 2x ln x + 2x + C.
Go through the explanation to understand better.
Explanation:
Given:
y = (ln x)2
∫(ln x)2dx = ∫(ln x) (ln x)dx
Let u = ln x, dv = ln x dx
So,
du = 1 / x dx and v =x ln x − x
Using Integration by Parts,
∫(ln x)2dx = (ln x)(x ln x − x) − ∫(x lnx−x) / x dx
= x (ln x)2 − x ln x − ∫(ln x − 1)dx
= x (ln x)2 − x ln x − (x ln x− x − x) + C
= x (ln x)2 − 2x ln x + 2x + C
Thus, the final integral of (ln x)2 is x (ln x)2 − 2x ln x + 2x + C
Math worksheets and
visual curriculum
visual curriculum