How do you verify (sec θ + csc θ)(cos θ - sin θ) = cot θ - tan θ?
Solution:
Given, (sec θ + csc θ)(cos θ - sin θ) = cot θ - tan θ
Consider L.H.S.,
(sec θ + cosec θ)(cos θ - sin θ)
= [(1 / cos θ) + (1 / sin θ)] (cos θ - sin θ)
= [(sin θ + cos θ) / (sin θ. cos θ)] (cos θ - sin θ)
= (cos2 θ - sin2 θ) / (sin θ. cos θ)
= [(cos2 θ / (sin θ. cos θ)] - [sin2 θ / (sin θ. cos θ)]
= (cos θ / sin θ) - (sin θ / cos θ)
= cot θ - tan θ
L.H.S. = R.H.S
Aliter
We can also verify by taking θ with a particular angle.
Let θ = 60°,
Now, considering L.H.S.
L.H.S. = (sec θ + cosec θ)(cos θ - sin θ)
= (sec 60° + cosec 60°) (cos 60° - sin 60°)
= [2 + (2/√3)] [(1/2) - (√3/2)]
= [2(1 + 1/√3)] [(1 - √3)/2]
= [1 + (1/√3)] (1 - √3)
= [(√3 + 1)/ √3] (1 - √3)
= (1 - 3) / √3
= -2/ √3 -----(1)
R.H.S. = cot θ - tan θ
= cot 60° - tan 60°
= (1/√3) - √3
= (1 - 3) / √3
= -2/√3 ------(2)
From (1) and (2)
(sec θ + csc θ)(cos θ - sin θ) = cot θ - tan θ
How do you verify (sec θ + csc θ)(cos θ - sin θ) = cot θ - tan θ?
Summary:
We can verify the equation (sec θ + csc θ)(cos θ - sin θ) = cot θ - tan θ by solving simultaneously LHS and RHS which is done in method I or by assuming the values of ‘θ’as done in method II.
visual curriculum