How do you prove sin (A + B) × sin (A - B) = sin2 A - sin2 B ?
The above expression can be proved by using algebraic identity as well as trigonometric identity.
Answer: sin (A + B) × sin (A - B) = sin2 A - sin2 B
Let us proceed step by step.
Explanation:
We already know the formula of sin (A + B) and sin (A − B) from trigonometric identity.
- sin (A + B) = sin (A + B) = sin (A) cos (B) + cos (A) sin (B)
- sin (A − B) = sin (A) cos (B) − cos (A) sin (B)
Therefore, sin (A + B) × sin (A − B) can be written as
sin (A + B) × sin (A − B) = (sin A cos B + cos A sin B) × (sin A cos B − cos A sin B) ------(1)
From algebraic identity, (a + b) × (a − b) = a2 – b2
Using the above identity in equation (1) we get,
sin (A + B) × sin (A − B) = (sin A cos B)2 − (cos A sin B)2
= sin2 A cos2 B − sin2 B cos2 A [ from trigonometric identity sin2 θ + cos2 θ = 1 ]
= sin2A (1− sin2 B) - sin2 B (1− sin2 A)
= sin2 A − sin2 B − sin2 A sin2 B + sin2 B sin2A
= sin2A − sin2B [ on simplifying the above expression ]
Hence proved, sin (A + B) × sin (A - B) = sin2 A – sin2 B
visual curriculum