How do you integrate cot2(x)dx?
We will use the identity cosec2x = 1 + cot2x to integrate cot2(x)dx.
Answer: ∫ cot2(x)dx = -cot x-x+C .
Let's integrate cot2(x)dx.
Explanation:
We know that,
cosec2x = 1 + cot2x
Hence,
cot2x = cosec2x - 1
Now,
∫cot2(x)dx = ∫(cosec2x−1)dx
=∫cosec2(x)dx − ∫1.dx
=−cotx −x +C
Thus, ∫cot2(x)dx = - cot x - x + C
Math worksheets and
visual curriculum
visual curriculum