How do You Find the Values of sin2θ and cos2θ, when cosθ=12/13.
To find the trigonometric values of Sin 2θ and Cos 2θ we can make use of trigonometric ratios and formulas.
Answer: The Values of sin2θ and cos2θ, when cosθ=12/13 is Sin2θ =120/169 and Cos2θ = 119/169
Let us see the detailed solution,
Explanation:
Given that,
Cosθ=12/13
Using the trignometric ratio for Cosθ, [ Cosθ = Adjacent/Hypotenuse ]
==> Adjacent/Hypotenuse = 12/13
Applying Pythagoras theorem, we can find the opposite side.
In a right angled triangle if Adjacent=12, Hypotenuse=13
Hypotenuse2 = Adjacent 2 + Opposite 2
Let the unknown opposite side be x.
Therefore,
132 = 122 + x2,
x2 = 169-144
x2 = 25
x = 5
Now, substituting these values into various trigonometric ratios , we get
Sinθ= Opposite / Hypotenuse
= 5/13
Cosθ = Adjacent / Hypotenuse
= 12/13
Now,
Using the trigonometric double angle identities
Sin2θ = 2SinθCosθ and Cos2θ = Cos2θ - Sin2θ
Substituting the values of Sinθ and Cosθ in the above identities we get
Sin2θ = 2SinθCosθ
= 2×(5/13)×(12/13)
= 120/169
Cos2θ = Cos2θ-sin2θ
=(12/13)2- (5/13)2
= 119/169
Thus , The Values of sin2θ and cos2θ, when cosθ=12/13 is Sin2θ = 120/169 and Cos2θ = 119/169
visual curriculum