How do you express sin 3θ in terms of trigonometric functions of theta?
Trigonometric functions (also called circular functions or angle functions) are real functions that relate an angle of a right-angled triangle to the ratio of the other two side lengths.
Answer: We can express sin 3θ as 3 sin θ - 4 sin3θ
Let us analyze this problem step by step.
Explanation:
To find the formula for sin 3θ, we can use sin (x + y) = sin x cos y + cos x sin y, where x is 2θ and y is θ. [3θ can be written as sum of θ and 2θ]
sin (2θ + θ) = sin 2θ cos θ + cos 2θ sin θ
sin 3θ = (2 sin θ cos θ) cos θ + (cos2θ - sin2θ) sin θ
sin 3θ = 2 sin θ cos2θ + cos2θ sinθ - sin3θ
sin 3θ = 2 sin θ (1 - sin2θ) + (1 - sin2θ) sinθ - sin3θ
sin 3θ = 2 sin θ - 2 sin3θ + sin θ - sin3θ - sin3θ
sin 3θ = 3 sin θ - 4 sin3θ
Thus, sin 3θ can be expressed as 3 sin θ - 4 sin3θ.
Math worksheets and
visual curriculum
visual curriculum