How do you expand (x - 1)3 using binomial expansion?
The binomial theorem or binomial expansion expresses the algebraic expansion of powers of a binomial.
Answer: The value of (x - 1)3 is x3 - 3x2 + 3x – 1.
Here is a comprehensive expansion to this binomial expression.
Explanation:
\((x+y)^a= \sum_{b=0}^a (a/b)x^{a-b} y^b \)
So, binomial expansion formula for (a + b)3 is,
⇒3\(C_{0}\) (a3b0) + 3\(C_{1}\) (a2b1) + 3\(C_{2}\) (a1b2) + 3\(C_{3}\) (a0b3)
By using the above formula we will expand (x - 1)3.
Here, a = x and b = (-1).
⇒ 3\(C_{0}\) x3 + 3\(C_{1}\) x2 (-1)1 + 3\(C_{2}\) x1(-1)2 + 3\(C_{3}\)(-1) 3
We know that, 3\(C_{0}\) = 3\(C_{3}\) = 1 and 3\(C_{1}\) = 3\(C_{2}\) = 3.
By substituting above values in the equation, we get,
⇒ 1 × x3 + 3 × x2(-1) + 3 × x(-1)2 + 1 × (-1)3
⇒ x 3 - 3x 2 + 3x - 1
Thus, the value of (x - 1)3 is x3 - 3x2 + 3x - 1.
visual curriculum