Give the values of angles for cos function.
Cosine is one of the most important functions of trigonometry which deals with the relationship between the angles and sides of a right-angle triangle.
Answer: cos 0° = 1, cos 30° = √3/2, cos 45° = 1/√2, cos 60° = 1/2, cos 90° = 0, cos 120° = -1, cos 150° = -√3/2, cos 180° = -1, cos 270° = 0, cos 360° = 1
We will find the values of angles for cos function.
Explanation:
in a right triangle , cos θ is given by adjacent side / hypotenuse ,
where θ is the angle formed between the hypotenuse and the base of a right-angled triangle.
the various cosine values based on the angle θ is listed below in the table.
θ | cos θ |
---|---|
0 | cos 0° = 1 |
30 | cos 30° = √3/2 |
45 | cos 45° = 1/√2 |
60 | cos 60° = 1/2 |
90 | cos 90° = 0 |
120 | cos 120° = cos (90 + 30)° = - sin 30° = -1/2 |
150 | cos 150° = cos (90 + 60)° = - sin 60° = -√3/2 |
180 | cos 180° = cos (180 - 0)° = - cos 0° = -1 |
270 | cos 270° = cos( 270 - 0)° = -sin 0° = 0 |
360 | cos 360° = cos( 360 + 0)° = cos 0° = 1 |
Thus, the values of angles for cos function are :cos 0° = 1, cos 30° = √3/2, cos 45° = 1/√2, cos 60° = 1/2, cos 90° = 0, cos 120° = -1, cos 150° = -√3/2, cos 180° = -1, cos 270° = 0, cos 360° =1
Math worksheets and
visual curriculum
visual curriculum