Give a recursive definition of the sequence {an}, n = 1,2,3,...if a sub n = n(n + 1).
Solution:
Given {an}, n = 1,2,3,...if a sub n = n(n + 1).
When n = 1 ⇒ a1 = 1(1 + 1) = 1(2) = 2
When n = 2 ⇒ a2 = 2(2 + 1) = 2(3) = 6
When n = 3 ⇒ a3 = 3(3 + 1) = 3(4) = 12
When n = 4 ⇒ a4 = 4(4 + 1) = 4(5) = 20
When n = 5 ⇒ a5 = 5(5 + 1) = 5(6) = 30
When n = 6 ⇒ a6 = 6(6 + 1) = 6(7) = 42
Hence, the recursive definition of the given sequence is 2, 6, 12, 20, 30, 42…
Give a recursive definition of the sequence {an}, n = 1, 2, 3,... if a sub n = n(n + 1).
Summary:
A recursive definition of the sequence {an}, n = 1, 2, 3,... if a sub n = n(n + 1) is given as 2, 6, 12, 20, 30, 42…
Math worksheets and
visual curriculum
visual curriculum