For what values of r does the function y = erx satisfy the differential equation 5y'' + 14y' - 3y = 0?
Solution:
Given function is y = erx and
Differential equation 5y'' + 14y' - 3y = 0 -----(1)
Differentiating y w.r.t x,
yꞌ = dy/dx = r. erx
yꞌꞌ = d2y / dx2 = r2.erx
Substituting values of yꞌ and yꞌꞌ in (1),
5y'' + 14y' - 3y = 0
⇒ 5.(r2.erx ) + 14.(r.erx) - 3erx = 0 -----(2)
Divide (2) by erx
⇒ 5r2 + 14r - 3 = 0
Using the formula to find roots of quadratic equation of standard form ax2 + bx + c = 0 ⇒ [-b ± √(b2 - 4ac)] / 2a we get,
r = {(-14) ± √[142 - (4 × 5 × (-3))]} / (2 × 5)
r = [-14 ± 16] / 10
⇒ r = (-14 + 16) / 10 and r = (-14 - 16) / 10
r = 1/5 and -3
For what values of r does the function y = erx satisfy the differential equation 5y'' + 14y' - 3y = 0?
Summary:
The function y = erx satisfies the differential equation 5y'' + 14y' - 3y = 0 for the values r = 1/5 and -3.
Math worksheets and
visual curriculum
visual curriculum