First make a substitution and then use integration by parts to evaluate the integral. \(\int_{0}^{π} e^{cost} sin 2t dt.\)
Solution:
Given: \(\int_{0}^{π} e^{cost} sin 2t dt.\)
\(\int_{0}^{π} e^{cost} sin 2t dt.\) = 2\(\int_{a}^{b} e^{cost} sin(t).cos(t)dt.\)----->
{we know that sin2t = 2sintcost}
Let us substitute u = cos t
du = - sint dt
Thus \(\int_{0}^{π} e^{cost} sin 2t dt.\) = 2\(\int_{a}^{b} e^{cost} sin(t).cos(t)dt.\)
= \(\int_{0}^{π} e^u . 2. u(-du)\)
=-2 \(\int_{0}^{π} e^u . u(du)\)
Now, integrate by parts: ∫ t.v = t.v - ∫vdt
Let
t = u
dt = 1. du
v = eu
dv =eu .du
-2 \(\int_{0}^{π} e^u . u(du)\)= t v - ∫vdt
= -2[ueu - ∫eu .du]
= -2ueu + 2 eu
=[-2 cos t. ecos t + 2 ecos t ]\(_0^{\pi}\)
= (-2cosπecosπ + 2 ecosπ) - (-2cos0ecos0 + 2 ecos0)
=(-2 (-1) e-1 + 2 e-1 )-(-2.1. e0 + 2e1 )
= 2 e-1 + 2e-1 + 2 e - 2e
= 4 e-1
= 4/e
therefore, \(\int_{0}^{π} e^{cost} sin 2t dt.\) = 4/e
First make a substitution and then use integration by parts to evaluate the integral. \(\int_{a}^{b} ecost sin 2t dt.\)
Summary:
By making a substitution and then using integration by parts to evaluate the integral, we got \(\int_{0}^{π} e^{cost} sin 2t dt.\) = 4/e.
visual curriculum