Find two unit vectors orthogonal to both 3, 5, 1 and -1, 1, 0 .
Solution:
Considering x = (3, 5, 1)
y = (-1, 1, 0)
\(\overline{x}\times \overline{y}=\begin{vmatrix} i & j & k\\ 3 & 5 & 1\\ -1 & 1 & 0 \end{vmatrix}\)
= i (0 - 1) - j (0 + 1) + k(3 + 5)
= -i - j + 8k
= (-1, -1, 8)
\(|\overline{x}\times \overline{y}|=\sqrt{1+1+64}=\sqrt{66}\)
Unit vector orthogonal to x and y
\(\\=\pm \frac{(\overline{x}\times \overline{y})}{|\overline{x}\times \overline{y}|} \\ \\=\pm \frac{1}{\sqrt{66}}(-1,-1,8)\)
Therefore, two unit vectors are \(\pm \frac{1}{\sqrt{66}}(-1,-1,8)\)
Find two unit vectors orthogonal to both 3, 5, 1 and -1, 1, 0 .
Summary:
The two unit vectors orthogonal to both 3, 5, 1 and -1, 1, 0 are \(\pm \frac{1}{\sqrt{66}}(-1,-1,8)\)
Math worksheets and
visual curriculum
visual curriculum