Find the value of sin75°.
Trigonometry deals with the measurement of angles and helps us study the relationship between the sides and angles of a right-angled triangle.
Answer: The value of sin75° is (√3 + 1)/ (2√2).
Let's look into the steps to find the value of sin 75°.
Explanation:
We can write sin 75° as,
sin 75° = sin (45° +30° )
We know that,
sin (A + B) = sin A. cos B + cos A. sin B
Thus, sin (45° + 30° ) = sin 45° . cos 30° + cos 45° . sin 30° ------------ (1)
From trigonometric table, we have the following values,
sin 30° = 1/2, sin 45° = 1/√2, cos 30° = √3/2 and cos 45° = 1/√2
Substituting these values in (1) we get,
⇒ sin (45° + 30° ) = 1/√2 . √3/2 + 1/√2 . 1/2
⇒ sin (45° + 30° ) = (√3 + 1) / 2√2
⇒ sin 75° = (√3 + 1) / 2√2
Hence, the value of sin75° is (√3 + 1)/ (2√2).
Math worksheets and
visual curriculum
visual curriculum