Find the unit tangent vector T(t ) at the point with the given value of the parameter t.
r(t) = (t2 - 2t,1 + 3t, 1/3t3 + 1/2t2), t = 2
Solution:
Given, the parametric curve is r(t) = t2 - 2t, 1 + 4t, (1/3)t3 + (1/2)t2
We have to find the unit tangent vector at t = 2.
Now, r’(t0 = [x’(t), y’(t), z’(t)]
x’(t) = 2t - 2
y’(t) = 3
z’(t) = (1/3)3t2 + (1/2)2t = t2 + 1
So, r’(t) = [2t - 2, 3, t2 + 1]
At t = 2,
r’(2) = [2(2) - 2, 3, (2)2 + 1]
r’(2) = [4 - 2, 3, 4 + 1]
r’(2) = [2, 3, 5]
Also the modulus of the r’(2) vector is
|r’(2)| = \(\sqrt{(2)^{2}+(3)^{2}+(5)^{2}}=\sqrt{4+9+25}=\sqrt{38}\approx 6\)
Now, T(t) = r’(2)/|r’(4)|
= 2/6, 3/6, 5/6
= 1/3, 1/2, 5/6
Therefore, T(t) = 1/3, 1/2, 5/6.
Find the unit tangent vector T(t ) at the point with the given value of the parameter t.
r(t) = (t2 - 2t,1 + 3t, 1/3t3 + 1/2t2), t = 2
Summary:
The unit tangent vector T(t ) at the point with the given value of the parameter t. r(t) = (t2 - 2t,1 + 3t, 1/3t3 + 1/2t2), t = 2 is T(t) = 1/3, 1/2, 5/6.
Math worksheets and
visual curriculum
visual curriculum