Find the roots of the equation x2 - 5x + 6 = 0 using the quadratic formula.
A quadratic equation is an equation in the form of ax2 - bx + c = 0 where a is a non-zero value.
Answer: Using the quadratic formula, the roots of the equation x2 - 5x + 6 are 2 and 3.
Let's find the roots of the given quadratic equation.
Explanation:
x= [-b + √ b2 - 4ac] / 2a ---------(1)
or x= [-b - √ b2 - 4ac] / 2a --------(2)
On substituting the values of a = 1, b = - 5 and c = 6 in (1), we get
⇒ [-(-5) + √ {(-5)2 - 4(1)(6)}] / 2 (1)
⇒ [5 + √ {25 - 24}] / 2
⇒ [5 + √1] / 2
⇒ 6 / 2
⇒ 3
On substituting the value a = 1, b = - 5 and c = 6 in (2), we get
⇒ [-(-5) - √ {(-5)2 - 4(1)(6)}] / 2(1)
⇒ [5 - √ {25 - 24}] / 2
⇒ [5 - √1] / 2
⇒ 4 / 2
⇒ 2
Thus. the roots of the equation x2 - 5x + 6 are 2 and 3.
Math worksheets and
visual curriculum
visual curriculum