Find the points on the given curve where the tangent line is horizontal or vertical r = eθ
Solution:
Given, r = eθ
We have to find the points on the given curve where the tangent line is horizontal or vertical.
Using polar coordinates,
x = r cos θ = eθcos θ
y = r sin θ = eθsin θ
Horizontal tangent occurs where dy/dx = 0
Vertical tangent occurs where dy/dx → ∞ ⇒ dx →0
Now, dy/dx = (dy/dθ) / (dx/dθ)
dy/dθ = eθsin θ + eθcos θ
dx/dθ = -eθsin θ + eθcos θ
dy/dx = (eθsin θ + eθcos θ) / (- eθsin θ + eθcos θ)
So horizontal tangent occurs where
(eθsin θ + eθcos θ) / (-eθsin θ + eθcos θ) = 0
eθsin θ + eθcos θ = 0
eθ(sin θ + cos θ) = 0
sin θ + cos θ = 0
sin θ = -cos θ
tan θ = -1
So, θ = 3π/4 and 7π/4
Therefore, the points on the curve are \((e^{\frac{3\pi }{4}},\frac{3\pi }{4})\) and \((e^{\frac{7\pi }{4}},\frac{7\pi }{4})\)
Vertical tangent occurs where
(eθsin θ + eθcos θ) / (- eθsin θ + eθcos θ) = ∞
-eθsin θ + eθcos θ = 0
eθ(-sin θ + cos θ) = 0
sin θ = cos θ
tan θ = 1
So, θ = π/4 and 5π/4
Therefore, the points on the curve are \((e^{\frac{\pi }{4}},\frac{\pi }{4})\) and \((e^{\frac{5\pi }{4}},\frac{5\pi }{4})\).
Find the points on the given curve where the tangent line is horizontal or vertical r = eθ
Summary:
The points on the given curve r = eθ where the tangent line is horizontal or vertical are \((e^{\frac{3\pi }{4}},\frac{3\pi }{4})\) and \((e^{\frac{7\pi }{4}},\frac{7\pi }{4})\) and \((e^{\frac{\pi }{4}},\frac{\pi }{4})\) and \((e^{\frac{5\pi }{4}},\frac{5\pi }{4})\).
visual curriculum