Find the McLaurin series expansion of f(x) = cos3x.
Solution:
Given, y = f(x) = cos3x
McLaurin’s series is given as;
“If f(x) can be expanded as an infinite series then,
f(x) = f(0) + x.f'(0) + x2 / 2!. f''(0) + x3 /3!.f'''(0) + x4 /4!.f''''(0) +... ” ……….(1)
f(x) = cos 3x ; f(0) = 1
f'(x) = -3sin 3x ; f'(0) = 0
f''(x) = -9cos 3x ; f''(0) = -9
f'''(x) = 27 sin 3x ; f'''(0) = 0
f''''(x) = -81 cos 3x ; f''''(0) = -81
∴ f(x) = cos 3x = 1 + 0 + x2 / 2!.(-9) + 0 + x4 /4!.(-81) +...
⇒cos 3x = 1 + x2 / 2!.(-9) + x4 /4!.(-81) +...
The expansion of f(x) = cos 3x = 1 -9 x2 / 2! - 81 x4 /4!+...
Find the McLaurin series expansion of f(x) = cos3x.
Summary:
The maclaurin series expansion of f(x)=cos 3x is 1 -9 x2 / 2! - 81 x4 /4!+.....
Math worksheets and
visual curriculum
visual curriculum