Find the linear approximation of the following function at (x, y, z) = (3, 2, 6). f(x, y) = √(x2 + y2 + z2)
Solution:
Given, f(x, y, z) = √(x2 + y2 + z2)
We have to find the linear approximation of the function at (3, 2, 6).
The function can also be written as
f(x) = (x2 + y2 + z2)1/2
f’(x) = \(\frac{1}{2}(x^{2}+y^{2}+z^{2})^{\frac{-1}{2}}(2x)\)
f’(x) \(=\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}\)
f’(y) = \(\frac{1}{2}(x^{2}+y^{2}+z^{2})^{\frac{-1}{2}}(2y)\)
f’(y) \(=\frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}\)
f’(z) = \(\frac{1}{2}(x^{2}+y^{2}+z^{2})^{\frac{-1}{2}}(2z)\)
f’(z) \(=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\)
Now, f(3, 2, 6) = \(={\sqrt{(3)^{2}+(2)^{2}+(6)^{2}}}\\=\sqrt{9+4+36}\\=\sqrt{49}\\=7\)
f’(x)(3, 2, 6) \(=\frac{3}{\sqrt{(3)^{2}+(2)^{2}+(6)^{2}}}\\=\frac{3}{7}\)
f’(y)(3, 2, 6) \(=\frac{2}{\sqrt{(3)^{2}+(2)^{2}+(6)^{2}}}\\=\frac{2}{7}\)
f’(z)(3, 2, 6) \(=\frac{6}{\sqrt{(3)^{2}+(2)^{2}+(6)^{2}}}\\=\frac{6}{7}\)
Using the formula,
L(x) = f(a) + f’(a)(x - a)
So, L(x, y, z) = f(3, 2, 6) + f’(x)(3, 2, 6) + f’(y)(3, 2, 6) + f’(z)(3, 2, 6)
L(x, y, z) = 7 + \(\frac{3}{7}(x-3)+\frac{2}{7}(y-2)+\frac{6}{7}(z-6)\)
Therefore, L(x, y, z) = \(7+\frac{3}{7}(x-3)+\frac{2}{7}(y-2)+\frac{6}{7}(z-6)\).
Find the linear approximation of the following function at (x, y, z) = (3, 2, 6). f(x, y) = √(x2 + y2 + z2)
Summary:
The linear approximation of the following function at (x, y, z) = (3, 2, 6). f(x, y) = √(x2 + y2 + z2) is L(x, y, z) = \(7+\frac{3}{7}(x-3)+\frac{2}{7}(y-2)+\frac{6}{7}(z-6)\).
visual curriculum