Find the length of the curve. r(t) = cos(2t) i + sin(2t) j + 2 ln(cos(t)) k, 0 ≤ t ≤ π/4.
Solution:
Given r(t) = cos(2t) i + sin(2t) j + 2 ln(cos(t)) k
r(t) is a parametric equation of t .
Also if r(t): R→R3 is a vector valued function of a real variable with independent scalar output variables x, y & z
r(t) = {x, y, z}
Where x = cos(2t) , y = sin(2t) and z = 2ln cos(t)
Length of the curve, S = \(\int_{0}^{π/4} \sqrt{(dx/dt)^2 + (dy/dt)^2 + (dz/dt)^2}dt\)
Consider
x = cos(2t) ⇒ dx/dt = -2sin(2t)
y = sin(2t) ⇒ dy/dt = 2cos(2t)
z = 2 ln(cos(t)) ⇒ dz/dt = (2/cos(t)) × (-sin(t))
dz/dt = -2(tant)
(dx/dt)2 + (dy/dt)2 + (dz/dt)2 = (-2sin(2t))2 + (2cos(2t))2 + (-2(tant))2
= 4sin2(2t) + 4cos2(2t) + 4tan2(t)
= 4[sin2(2t) + cos2(2t)] + tan2(t))
= 4(1+ tan2(t))[Since sin2t + cos2t= 1]
= 4sec2(t)
\(\sqrt{(dx/dt)^2 + (dy/dt)^2 + (dz/dt)^2}dt\) = √4sec2(t)
= √(2sec(t))2
= 2sec(t)
S = \(\int_{0}^{π/4} 2sec(t) dt\)
∫sec(t)= ln[sect + tant]
\(S = 2ln(sect + tant)]_{0}^{π/4}\)
S = 2[ln(sec(π/4) + tan(π/4))] - 2[ln(sec(0) + tan(0))]
S = 2[ln(√2 + 1) - ln(1 + 0)]
S = 2[ln (√2 +1 )] - 0
S = 2[ln(√2 + 1)]
Find the length of the curve. r(t) = cos(2t) i + sin(2t) j + 2 ln(cos(t)) k, 0 ≤ t ≤ π/4.
Summary:
The length of the curve. r(t) = cos(2t) i + sin(2t) j + 2 ln(cos (t)) k, 0 ≤ t ≤ π / 4 is 2[ln(√2 + 1)]
visual curriculum