Find the length of the curve. r(t) = cos (7t) i + sin (7t)j + 7 ln cos t k, 0 ≤ t ≤ π/4.
Solution:
Given the curve r(t) = cos (7t) i + sin (7t)j + 7 ln cost k
Length of curve or the arc length =\(\int\limits_0^{\pi/4}\) √{(dx/dt)2 +(dy/dt)2 +(dz/dt)2}dt
=\(\int\limits_0^{\pi/4}\) √{49sin27t + 49cos27t + 49tan27t}dt
= 7 \(\int\limits_0^{\pi/4}\) √(1+ tan2t)dt [since cos2t + sin2t=1]
= 7\(\int\limits_0^{\pi/4}\) sect dt
= 7 log | sect + tant t |\(^{\pi/4}_0\) [since ∫ sec x dx = ln(sec x + tan x) + c]
= 7(log(sec(π/4) +tan(π/4)) - log((sec(0) +tan(0)))
= 7(log (√2 +1) - log(1 +0)) [Using the trigonometric ratios]
= 7(log (√2 +1))
Find the length of the curve. r(t) = cos (7t) i + sin (7t)j + 7 ln cos t k, 0 ≤ t ≤ π/4.
Summary:
The length of the curve. r(t) = cos (7t) i + sin (7t)j + 7 ln cos t k, 0 ≤ t ≤ π/4 is 7(log (√2 +1)).
Math worksheets and
visual curriculum
visual curriculum