Find the integral of (sinx + cosx) / [3+sin2x] dx.
Integration is exactly the reverse of differentiation. The integral of (sinx + cosx) / [3+sin2x] dx can be found using substitution method.
Answer: The integral of (sinx + cosx) / [3+sin2x] dx is 1/4 log {(2 + sinx - cosx) / (2 - sinx + cosx)} + C.
Let's look into the step by step solution.
Explanation:
⇒ ∫ (sinx+cosx)dx/ 3 + sin2x
⇒ ∫ (sinx+cosx)dx / (4 - 1) + sin2x
⇒ ∫ (sinx+cosx)dx / 4 - (1 - sin2x )
⇒ ∫ (sinx+cosx)dx / 4 - (sin2x + cos2x - sin2x ) [Using the trigonometric identity, sin2x + cos2x = 1 ]
⇒ ∫ (sinx+cosx)dx / 4- (sinx - cosx )2 [Using the algebraic identity, (a-b)2] --------------- (1)
Let, sinx - cosx = t ---------- (2)
On differentiating both the sides,
⇒ (cosx + sinx) dx = dt ------------- (3)
Substituting (2) and (3) in (1) we get,
⇒ ∫ dt / (22 - t2)
⇒ 1/2(2) log {(2+t) / (2-t)} + C [ Since, 1 / (aa- x2) dx = 1/2a log {(a+x) / (a-x)} + C]
⇒ 1/4 log {(2 + sinx - cosx) / (2 - sinx + cosx)} + C
where, C is the constant of integration.
Thus, the integral of (sinx + cosx) / [3 + sin2x] dx is 1/4 log {(2 + sinx - cosx) / (2 - sinx + cosx)} + C.
visual curriculum