Find the fifth root of 243(cos 300° + i sin 300°).
Solution:
Let Z = 243(cos 300° + i sin 300°)
Taking fifth root on both sides
Z1/5 = (243)1/5 [cos 300° + i sin 300° ]1/5
Using De- Moivers theorem
If z = r [cos θ + i sinθ] then zn = rn[cos nθ + i sin nθ]
z1/5 = (35)1/5 [cos(300°/5)+ i sin (300°/5)]
z1/5 = 3[cos 60+ i sin 60°]
Find the fifth root of 243(cos 300° + i sin 300°).
Summary:
The fifth roots of 243(cos 300° + i sin 300°) is 3 [cos 60°+ i sin 60°]
Math worksheets and
visual curriculum
visual curriculum