Find an expression for cos 3x in terms of cos x?
To find an expression for cos 3x in terms of cos x, we will use trigonometric identities.
Answer: The expression for cos 3x in terms of cos x is 4 cos3x - 3 cos x.
Here's is the detailed solution.
Explanation:
As we know that cos 3x can be expressed in terms of cos (2x + x)
By using cos (A + B) = cos A × cos B - sin A × sin B
⇒ cos (2x + x) = cos 2x × cos x - sin 2x × sin x
As we know cos 2x = 2 cos2x - 1 and sin 2x = 2 sin x cos x
⇒ (-1 + 2 cos2x) cosx - 2 sin x cos x sin x
⇒ 2 cos3x - cos x - 2 sin2x cos x
By using sin2x = 1 - cos2x, we get
⇒ 2 cos3x - cos x - 2 (1 - cos2x) cosx
⇒ 2 cos3x - cos x - 2 cos x + 2cos3x
⇒ 4 cos3x - 3 cos x
Thus, the expression for cos 3x in terms of cos x is 4cos3x - 3 cos x.
Math worksheets and
visual curriculum
visual curriculum