Find the exact values of the six trigonometric ratios of the angle θ in the triangle?
Solution:
From the figure,
Opposite = 200
Hypotenuse = 205
a2 + b2 = c2
So, (200)2 + b2 = (205)2
⇒ 40000 + b2 = 42025
⇒ b2 = 42025 - 40000
⇒ b2 = 2025
Taking square root,
⇒ b = 45
So, adjacent = 45
We have to find the exact values of the six trigonometric ratios of the angle θ in the triangle.
⇒ We know, sin θ = opposite/hypotenuse
sin θ = 200/205
sin θ = 0.9756
⇒ cos θ = adjacent/hypotenuse
cos θ = 45/205
cos θ = 0.2195
⇒ tan θ = opposite/adjacent
tan θ = 200/45
tan θ = 4.4444
⇒ cosec θ = hypotenuse/opposite
cosec θ = 205/200
cosec θ = 1.025
⇒ sec θ = hypotenuse/adjacent
sec θ = 205/45
sec θ = 4.5556
⇒ cot θ = adjacent/opposite
cot θ = 45/200
cot θ = 0.2250
Therefore, the exact values of six trigonometric ratios are sin θ = 0.9756, cos θ = 0.2195, tan θ = 4.4444,
cosec θ = 1.025, sec θ = 4.5556 and cot θ = 0.2250.
Find the exact values of the six trigonometric ratios of the angle θ in the triangle?
Summary:
The exact values of the six trigonometric ratios of the angle θ in the triangle are sin θ = 0.9756, cos θ = 0.2195, tan θ = 4.4444, cosec θ = 1.025, sec θ = 4.5556 and cot θ = 0.2250.
visual curriculum