Find the exact length of the curve. y = ln(1-x2 ), 0 ≤ x ≤ 1/5.
Solution:
Given,
y = ln(1 - x2 ), 0 ≤ x ≤ 1/5
Length of the curve, y = f(x) from x = a to x = b is given by:
\( \int_{a}^{b}\sqrt{1+f'(x)^{2}} .dx\)
y = ln(1 - x2)
Differentiating w.r.t. x,
dy/dx = 1/(1 - x2) × (-2x) = -2x/(1 - x2)
Length of the curve,
= \( \int_{0}^{1/5}\sqrt{1+\left [\frac{-2x}{(1-x^{2})} \right ]^{2}} .dx\ \)
= \( \int_{0}^{1/5}\sqrt{\left [ \frac{1 +x^{4}-2x^{2}+4x^{2}}{(1-x^{2})^{2}} \right ]} .dx \)
= \( \int_{0}^{1/5}\sqrt{\frac{(1+x^{2})^{2}}{(1-x^{2})^{2}}} . dx \)
= \( \int_{0}^{1/5}\frac{1+x^{2}}{1-x^{2}} . dx\)
By dividing numerator by denominator and expressing using
Dividend/Divisor = Quotient + (Remainder/Divisor)
= \( \int_{0}^{1/5}-1 + \frac{2}{1-x^{2}}.dx \)
= \( -x\Biggr|_{0}^{1/5} + 2 \frac{1}{2} log\left | \frac{1 + x}{1-x} \right |\Biggr|_{0}^{1/5} \)
= \( -\left ( \frac{1}{5}-0 \right ) + log \left | \frac{1+ \frac{1}{5}}{1-\frac{1}{5}} \right |-log\left | \frac{1+0}{1-0} \right | \)
= \( -\frac{1}{5} + log\left | \frac{3}{2} \right |- log (1) \)
= \( -\frac{1}{5} + log\left | \frac{3}{2} \right |- 0 \)
= log(3/2) - 1/5
Find the exact length of the curve. y = ln(1 - x2 ), 0 ≤ x ≤ 1/5.
Summary:
The exact length of the curve, y = ln(1-x2), 0 ≤ x ≤ 1/5 is log(3/2) - 1/5.
visual curriculum