Find the derivative of the function using the definition of derivative. g(t) = 9/√ t.
Solution:
Given, g(t) = 9/√t
We have to find the derivative of the function.
The differentiation by the first principle states that,
f’(x) = [f(x+h)-f(x)]/h
Where h<<0
Now, g’(t) = [9/√(t+h) - (9/√t)]/h
g’(t) = [9√t - 9√(t+h)]/[h.(√t+h)(√t)]
g’(t) = [9(√t - √(t+h))]/[h.(√t+h)(√t)]
By using the conjugate of √t - √(t+h)
Multiplying by √t + √(t+h)/√t + √(t+h)
g’(t) = \(\lim_{h \to 0}\) [9(√t - √(t+h))]/[h.(√t+h)(√t)][√t + √(t+h)]/[√t + √(t+h)]
g’(t) = \(\lim_{h \to 0}\frac{9(t-(t+h))}{h(\sqrt{t+h}\sqrt{t})(\sqrt{t}+\sqrt{t+h})}\)
= \(\lim_{h \to 0}\frac{-9h}{h(\sqrt{t+h}\sqrt{t})(\sqrt{t}+\sqrt{t+h})}\)
= \(\lim_{h \to 0}\frac{-9}{(\sqrt{t+h}\sqrt{t})(\sqrt{t}+\sqrt{t+h})}\)
Now, evaluating the limit,
g’(t) = \(\frac{-9}{(\sqrt{t+0}\sqrt{t})(\sqrt{t}+\sqrt{t+0})}\)
g’(t) = \(\frac{-9}{(\sqrt{t}\sqrt{t})(\sqrt{t}+\sqrt{t})}\)
g’(t) = \(\frac{-9}{(t)(2\sqrt{t})}\)
g’(t) = \(\frac{-9}{2t\sqrt{t}}\)Therefore, the derivative of the function is \(\frac{-9}{2t\sqrt{t}}\).
Find the derivative of the function using the definition of derivative. g(t) = 9/√ t.
Summary:
The derivative of the function using the definition of derivative. g(t) = 9/√ t is \(\frac{-9}{2t\sqrt{t}}\).
visual curriculum