Find the area of the region enclosed by one loop of the curve. r = sin(2θ)
Solution:
Given, r = sin(2θ)
When, r = 0
sin(2θ) = 0
2θ = 0 or π
θ = 0 or π/2
Thus, the limit lies in the interval 0 to + π/2.
Area of the polar region = \(\frac{1}{2}\int_{a}^{b}r^{2}\, d\theta\)
A = \(\frac{1}{2}\int_{0}^{\frac{\pi }{2}}(sin(2\theta ))^{2}\, d\theta\)
A = \(\frac{1}{2}\int_{0}^{\frac{\pi }{2}}sin^{2}(2\theta )\, d\theta\) --- (1)
We know, cos2(2x) = 1 - 2sin2(x)
So, cos(4θ) = 1 - 2sin2(2θ)
On rearranging,
2sin2(2θ) = 1 - cos(4θ)
sin2(2θ) = 1/2 - cos(4θ)/2
Substitute the value of sin2(2θ) in (1)
A = \(\frac{1}{2}\int_{0}^{\frac{\pi }{2}}(\frac{1}{2}-\frac{cos(4\theta )}{2})\, d\theta\)
= \(\frac{1}{2}[(\frac{1}{2}\theta) -\frac{1}{2}(\frac{1}{4}sin(4\theta))]_{0}^{\frac{\pi }{2}}\)
= \(\frac{1}{2}[(\frac{1}{2}\theta) -(\frac{1}{8}sin(4\theta))]_{0}^{\frac{\pi }{2}}\)
= \(\frac{1}{2}[(\frac{1}{2}\frac{\pi }{2}) -(\frac{1}{8}sin(4(\frac{\pi }{2})))-0]\)
= \(\frac{1}{2}[\frac{\pi }{4} -(\frac{1}{8}sin(2\pi))-0]\)
= \(\frac{1}{2}[\frac{\pi }{4} -\frac{1}{8}(0)]\)
= \(\frac{1}{2}[\frac{\pi }{4}]\)
= \(\frac{\pi }{8}\)
Therefore, the area is \(\frac{\pi }{8}\) square units.
Find the area of the region enclosed by one loop of the curve. r = sin(2θ)
Summary:
The area of the region enclosed by one loop of the curve r = sin(2θ) is \(\frac{\pi }{8}\)square units.
visual curriculum