Find sin(2x), cos(2x), and tan(2x) from the given information. tan(x) = -4/3 , x in quadrant II
Solution:
Given:
tan(x) = -4/3 ,
x in quadrant II
⇒ x = tan-1(-4/3)
⇒x = 180° - tan-1(4/3)
[ since x is in Q-2, x must be less than 180° ]
⇒ x = 180° - 71.56°
⇒ x = 108.44°
Now sin (2x) = sin (2 × 108.44°)
= sin (216.88°) = -0.6
cos(2x) = cos(2 × 108.44°)
= cos(216.88°) = -0.79
From trigonometric identitites,
we know that tan x = sin x / cos x
tan (2x) = sin (2x) / cos (2x)
= -0.6/-0.79 = 0.75
Find sin(2x), cos(2x), and tan(2x) from the given information. tan(x) = -4/3 , x in quadrant II
Summary;
The values of sin(2x), cos(2x), and tan(2x) from the given information tan(x) = -4/3 when x in quadrant II is -0.6, -0.79 and 0.75 respectively.
Math worksheets and
visual curriculum
visual curriculum