Find sin θ if cot θ = - 2 and cos θ < 0.
Solution:
Given that cot θ = - 2 and cos θ < 0
Clearly cot θ and cos θ both are negative.
⇒ θ is an angle from II quadrant
From OA2 = OB2 + AB2
OA2 = (-2)2 + 12
OA² = 5 ⇒ OA = √5
cot θ = Adjacent side / Opposite = -2 / 1
sin θ = Opposite / Hypotenuse = 1 / √5
Aliter:
cos θ < 0 and cot θ = - 2, tells us that sine quantity must be positive and the quadrant will be the 2nd quadrant.
We will start with the trigonometric identity: 1 + cot2 (θ) = csc2 (θ)
Subsitute cot2 (θ) = (-2)2
1 + (-2)2 = csc2 (θ)
5 = csc2 (θ)
Substitute csc2 (θ) = 1 / sin2 (θ)
5 = 1 / sin2 (θ)
sin2 (θ) = 1 / 5
sin (θ) = ±1 / √5
Find sin θ if cot θ = - 2 and cos θ < 0.
Summary:
If cot θ = - 2 and cos θ < 0, sin θ = 1 / √5.
Math worksheets and
visual curriculum
visual curriculum