Find dy/dx by implicit differentiation. x2 /x + y = y2 + 9
Solution:
x2 /(x + y) = y2 + 9
x2 = (y2 + 9)(x + y)
Differentiating the above w.r.t. x we have:
2x = (x + y)d(y2 + 9)/dx + (y2 + 9)d(x + y)/dx
2x = 2(x + y)ydy/dx + (y2 + 9)dx/dx + (y2 + 9)dy/dx
2x = y2 + 9 + ( 2xy + 2y2 + y2 + 9 )dy/dx
2x - (y2 + 9) = (2xy + 3y2 + 9)dy/dx
dy/dx = (2x - y2 - 9)/(2xy + 3y2 + 9)
Find dy/dx by implicit differentiation. x2 /x + y = y2 + 9
Summary:
dy/dx by implicit differentiation of x2 /x + y = y2 + 9 is (2x - y2 - 9)/(2xy + 3y2 + 9)
Math worksheets and
visual curriculum
visual curriculum