Find a numerical value of one trigonometric function of x for cos2x + 2sinx - 2 = 0
Solution:
Given cos2x + 2sinx - 2 = 0
We know trignometric identity: sin2x + cos2x = 1
So, cos2x = 1 - sin2x
⇒ (1 - sin2x) + 2sinx - 2 = 0
⇒ -sin2x + 2sinx - 1 = 0
⇒ sin2x - 2sinx + 1 = 0
This is similar to the algebraic identity: (a2 - 2ab + b2) = (a - b)2
⇒ (sinx - 1)(sinx - 1) = 0
⇒ (sinx - 1)2 = 0
⇒ sinx = 1
⇒ x = sin-1(1)
⇒ x = π/2 + 2πn
Find a numerical value of one trigonometric function of x for cos2x + 2sinx - 2 = 0
Summary:
A numerical value of one trigonometric function of x for cos2x + 2sinx - 2 = 0 is x = π/2 + 2πn.
Math worksheets and
visual curriculum
visual curriculum