Factor completely 3x2 - 21.
3(x2 - 7), 3(x + 7)(x - 7), 3(x + 7)(x - 3), Prime
Solution:
Given: Expression is 3x2 - 21
In order to find roots, we need to factor the polynomial.
⇒ 3x2 - 21
⇒ 3(x2 - 7)
This is in the form (a2 - b2), we know that the difference of the squares (a2 - b2) = (a + b)(a - b)
We can write (x2 - 7) as (x + 7) and (x - 7)
⇒ 3(x - 7)(x + 7)
Hence, by factoring completely, we get 3(x - 7)(x + 7).
Factor completely 3x2 - 21.
Summary:
Factors of 3x2 - 21 are 3(x - 7)(x + 7).
Math worksheets and
visual curriculum
visual curriculum