Evaluate the integral. (use c for the constant of integration.) x2/ √49 - x2 dx .
Solution:
Given, x2/ √(49 - x2) dx
We have to find the value of the integral using c for the constant of integration.
Now, √(49 - x2) is of the form √(a2 - x2) which looks like √(1 - sin2θ)
We know, sin2θ + cos2θ = 1
cos2θ = 1 - sin2θ
So, let a2 = 49
a = 7
x = a sinθ
x = 7 sinθ
x2 = 49 sin2θ
dx = acosθ dθ
dx = 7 cosθ dθ
Now, √(49 - x2) = √(7)2 - (7sinθ)2
= √(49 - 49sin2θ)
= 7√(1 - sin2θ)
= 7√cos2θ
= 7 cosθ
So, \(\int \frac{x^{2}}{\sqrt{49-x^{2}}}=\int \frac{49sin^{2}\theta }{7cos\theta }(7cos\theta )d\theta\)
\(=\int 49sin^{2}\theta \, d\theta\)
\(=49\int sin^{2}\theta \, d\theta\)
We know, \(sin^{2}\theta =\frac{1-cos(2\theta )}{2}\)
So, \(49\int sin^{2}\theta \, d\theta=49\int \frac{1-cos(2\theta )}{2}d\theta \\=\frac{49}{2}\int d\theta -\frac{49}{2}\int cos(2\theta )d\theta \\=\frac{49}{2}\theta -\frac{49}{4}sin(2\theta )+c\)
Consider right triangle, where x/7 = sinθ
θ = arcsin(x/7)
cosθ = \(\frac{\sqrt{49-x^{2}}}{7}\)
sinθ = x/7
Using the identity,
sin(2θ) = 2 sinθ cosθ
So, \(\frac{49}{4}sin(2\theta )=\frac{49}{4}(2sin\theta cos\theta )\\=\frac{49}{4}(2)(\frac{x}{7})(\frac{\sqrt{49-x^{2}}}{7})\\=\frac{x}{2}\sqrt{49-x^{2}}\)
Therefore, \(\int \frac{x^{2}}{\sqrt{49-x^{2}}}=\frac{49}{2}arcsin(\frac{x}{7})+\frac{x}{2}\sqrt{49-x^{2}}+C\).
Evaluate the integral. (use c for the constant of integration.) x2/ √49 - x2 dx .
Summary:
The solution to the integral is \(\int \frac{x^{2}}{\sqrt{49-x^{2}}}=\frac{49}{2}arcsin(\frac{x}{7})+\frac{x}{2}\sqrt{49-x^{2}}+C\).
visual curriculum