Evaluate the integral (use c for the constant of integration) ∫8tan4(x) sec6(x) dx
Solution:
Given the integral: ∫8tan4(x) sec6(x) dx
⇒ 8 ∫tan4(x) sec4(x) sec2(x) dx
⇒ 8 ∫tan4(x) (sec2(x))2 sec2(x) dx
⇒ 8 ∫tan4(x) (tan2x + 1)2 sec2(x) dx
Let tan x = t ⇒ sec2x dx = dt
⇒ 8 ∫t4 (t2 + 1)2 dt
⇒ 8 ∫t4 (t4 + 2t2 + 1) dt
⇒ 8∫(t8 + 2t6+ t4) dt
⇒ 8 [t9/9 + 2 × t7 / 7 + t5 /5] + C
⇒ 8/9 (tan x)9 +16/7 (tan x)7 + 8/5 (tan x)5 + C
Evaluate the integral (use c for the constant of integration) ∫8tan4(x) sec6(x) dx
Summary:
Integration of ∫8tan4(x) sec6(x) dx is 8/9 (tan x)9 +16/7 (tan x)7 + 8/5 (tan x)5 + C.
Math worksheets and
visual curriculum
visual curriculum