Evaluate the integral.\(\int_{0}^{2}(4ti - t^{3}j + 3t^{5}k)dt\)
Solution:
Let us evaluate the given integral:\(\int_{0}^{2}(4ti - t^{3}j + 3t^{5}k)dt\)
Using the power rule of integration, ∫ xn dx = (xn+1)/ (n+1)+ C. (Where n ≠ -1)
= \(\int_{0}^{2}4tidt - \int_{0}^{2} t^{3}jdt + \int_{0}^{2}3t^{5}kdt\)
= \(4i[\frac{t^{2}}{2}]_{0}^{2} - j[\frac{t^{4}}{4}]_{0}^{2} + 3k[\frac{t^{6}}{6}]_{0}^{2}\)
Now applying the limits, we get
= 4i[4/2 - 0] - j[16/4 - 0] + 3k[64/6 - 0]
=4i[4/2]-j[16/4] + 3k[64/6]
=8i - 4j + 32k
Evaluate the integral \(\int_{0}^{2}(4ti - t^{3}j + 3t^{5}k)dt\)
Summary:
The integral \(\int_{0}^{2}(4ti - t^{3}j + 3t^{5}k)dt\) results in 8i - 4j + 32k
Math worksheets and
visual curriculum
visual curriculum