Evaluate the indefinite integral. (use C for the constant of integration. ∫ sin(t)√(1 + cos(t)) dt
Solution:
Given, ∫ sin(t) √(1 + cos(t)) dt
Let 1 + cos(t) dt = u
Then, du = -sin(t) dt
So, dt = (-1/sin(t))du
Now, the given integral becomes
= \(\int -1\sqrt{u}du\)
= -1\(\int \sqrt{u}du\)
= \(-\int u^{\frac{1}{2}}du\)
= \(-\frac{2}{3}u^{\frac{3}{2}}+C\)
Now replacing u with 1 + cos(t)
= \(-\frac{2}{3}(1+cos(t))^{\frac{3}{2}}+C\)
Therefore, the solution of the indefinite integral is \(-\frac{2}{3}(1+cos(t))^{\frac{3}{2}}+C\).
Evaluate the indefinite integral. (use C for the constant of integration. ∫ sin(t) √(1 + cos(t)) dt
Summary:
The general solution of the indefinite integral ∫ sin(t) √(1 + cos(t)) dt is \(-\frac{2}{3}(1+cos(t))^{\frac{3}{2}}+C\).
Math worksheets and
visual curriculum
visual curriculum