Evaluate (1 + cos θ) / (1 - cos θ).
Cos θ or cosine θ represents an acute angle in a right angled triangle and is described as adjacent / hypotenuse
Solution:
To evaluate: (1 + cos θ) / (1 - cos θ)
We can write cos θ as 1/ sec θ
⇒ (1 + 1/ sec θ) / (1 - 1/ sec θ)
⇒ (sec θ + 1) / (sec θ - 1)
By multiplying both numerator and denominator with (sec θ - 1) we get,
⇒ (sec2 θ - 12 ) / (sec θ - 1)2 [Since, (a + b) (a - b) = a2 - b2]
Using trigonometric identity, sec2 θ - 1 = tan2 θ
⇒ tan2 θ / (sec θ - 1)2
Thus, the value of (1 + cos θ) / (1 - cos θ) is tan2 θ / ( sec θ - 1)2
Evaluate (1 + cos θ) / (1 - cos θ).
Summary:
The value of (1 + cos θ) / (1 - cos θ) is tan2 θ / ( sec θ - 1)2
Math worksheets and
visual curriculum
visual curriculum