Determine whether the series \(\sum_{n=1}^{\infty }\frac{1}{(n^{2}+5n+6)}\) is convergent or divergent. If it is convergent, find its sum.
Solution:
Given, \(\sum_{n=1}^{\infty }\frac{1}{(n^{2}+5n+6)}\)
We have to find whether the series is convergent or divergent.
We have to find the sum if the series is convergent.
\(\lim_{n \to \infty }a_{n}=0\) is not sufficient to prove the series \(\sum_{n=1}^{\infty }a_{n}\).
So, take \(a_{n}=\frac{1}{n}\)
Now, n² + 5n + 6 can be written as (n + 2) (n + 3)
\(\frac{1}{(n^{2}+5n+6)}=\frac{1}{(n+2)(n+3)}\)
= \(\frac{1}{(n+2)}-\frac{1}{(n+3)}\)
So, \(\sum_{n=1}^{\infty }\frac{1}{(n^{2}+5n+6)}=\sum_{n=1}^{N}(\frac{1}{n+2}-\frac{1}{n+3})\)
S = \(\lim_{n \to \infty }S_{n}\)
Where, Sₙ are the partial sums.
a₁ = \((\frac{1}{1+2}-\frac{1}{1+3})\\=(\frac{1}{3}-\frac{1}{4})\)
\(a_{2}=(\frac{1}{2+2}-\frac{1}{2+3})\\=(\frac{1}{4}-\frac{1}{5})\)
\(a_{3}=(\frac{1}{3+2}-\frac{1}{3+3})\\=(\frac{1}{5}-\frac{1}{6})\)
S₁ = a₁ = \(\frac{1}{3}-\frac{1}{4}\)
\(S_{2}=a_{1}+a_{2}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}=\frac{1}{3}-\frac{1}{5}\)
\(S_{3}=a_{1}+a_{2}+a_{3}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}=\frac{1}{3}-\frac{1}{6}\)
\(S_{n}=a_{1}+a_{2}+a_{3}+....+a_{n}=\frac{1}{3}-\frac{1}{n+3}\)
So, \(S=\lim_{n \to \infty }(\frac{1}{3}-\frac{1}{n+3})=\frac{1}{3}\)
Therefore, the series is convergent and its sum is 1/3.
Determine whether the series \(\sum_{n=1}^{\infty }\frac{1}{(n^{2}+5n+6)}\) is convergent or divergent. If it is convergent, find its sum.
Summary:
The series \(\sum_{n=1}^{\infty }\frac{1}{(n^{2}+5n+6)}\) is convergent and its sum is 1/3.
visual curriculum