

Factors of 7500
Factors of 7500 are the list of integers that we can split evenly into 7500. There are overall 30 factors of 7500 among which 7500 is the biggest factor and its prime factors are 2, 3, 5. The Prime Factorization of 7500 is 22 × 31 × 54.
- All Factors of 7500: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 25, 30, 50, 60, 75, 100, 125, 150, 250, 300, 375, 500, 625, 750, 1250, 1500, 1875, 2500, 3750 and 7500
- Prime Factors of 7500: 2, 3, 5
- Prime Factorization of 7500: 22 × 31 × 54
- Sum of Factors of 7500: 21868
1. | What Are the Factors of 7500? |
2. | Factors of 7500 by Prime Factorization |
3. | Factors of 7500 in Pairs |
4. | FAQs on Factors of 7500 |

What are Factors of 7500?
Factors of 7500 are pairs of those numbers whose products result in 7500. These factors are either prime numbers or composite numbers.
How to Find the Factors of 7500?
To find the factors of 7500, we will have to find the list of numbers that would divide 7500 without leaving any remainder.
- 7500/4 = 1875; therefore, 4 is a factor of 7500 and 1875 is also a factor of 7500.
- 7500/1500 = 5; therefore, 1500 is a factor of 7500 and 5 is also a factor of 7500.
☛ Also Check:
- Factors of 26 - The factors of 26 are 1, 2, 13, 26
- Factors of 29 - The factors of 29 are 1, 29
- Factors of 37 - The factors of 37 are 1, 37
- Factors of 57 - The factors of 57 are 1, 3, 19, 57
- Factors of 38 - The factors of 38 are 1, 2, 19, 38
Factors of 7500 by Prime Factorization
- 7500 ÷ 2 = 3750
- 3750 ÷ 2 = 1875
Further dividing 1875 by 2 gives a non-zero remainder. So we stop the process and continue dividing the number 1875 by the next smallest prime factor. We stop ultimately if the next prime factor doesn't exist or when we can't divide any further.
So, the prime factorization of 7500 can be written as 22 × 31 × 54 where 2, 3, 5 are prime.
Factors of 7500 in Pairs
Pair factors of 7500 are the pairs of numbers that when multiplied give the product 7500. The factors of 7500 in pairs are:
- 1 × 7500 = (1, 7500)
- 2 × 3750 = (2, 3750)
- 3 × 2500 = (3, 2500)
- 4 × 1875 = (4, 1875)
- 5 × 1500 = (5, 1500)
- 6 × 1250 = (6, 1250)
- 10 × 750 = (10, 750)
- 12 × 625 = (12, 625)
- 15 × 500 = (15, 500)
- 20 × 375 = (20, 375)
- 25 × 300 = (25, 300)
- 30 × 250 = (30, 250)
- 50 × 150 = (50, 150)
- 60 × 125 = (60, 125)
- 75 × 100 = (75, 100)
Negative pair factors of 7500 are:
- -1 × -7500 = (-1, -7500)
- -2 × -3750 = (-2, -3750)
- -3 × -2500 = (-3, -2500)
- -4 × -1875 = (-4, -1875)
- -5 × -1500 = (-5, -1500)
- -6 × -1250 = (-6, -1250)
- -10 × -750 = (-10, -750)
- -12 × -625 = (-12, -625)
- -15 × -500 = (-15, -500)
- -20 × -375 = (-20, -375)
- -25 × -300 = (-25, -300)
- -30 × -250 = (-30, -250)
- -50 × -150 = (-50, -150)
- -60 × -125 = (-60, -125)
- -75 × -100 = (-75, -100)
NOTE: If (a, b) is a pair factor of a number then (b, a) is also a pair factor of that number.
Factors of 7500 Solved Examples
-
Example 1: How many factors are there for 7500?
Solution:
The factors of 7500 are too many, therefore if we can find the prime factorization of 7500, then the total number of factors can be calculated using the formula shown below.
If the prime factorization of the number is ax × by × cz where a, b, c are prime, then the total number of factors can be given by (x + 1)(y + 1)(z + 1).
Prime Factorization of 7500 = 22 × 31 × 54
Therefore, the total number of factors are (2 + 1) × (1 + 1) × (4 + 1) = 3 × 2 × 5 = 30 -
Example 2: Find the Least Common Multiple (LCM) and Greatest Common Divisor (GCD) of 7500 and 901.
Solution:
The factors of 7500 are 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 25, 30, 50, 60, 75, 100, 125, 150, 250, 300, 375, 500, 625, 750, 1250, 1500, 1875, 2500, 3750, 7500 and factors of 901 are 1, 17, 53, 901.
Therefore, the Least Common Multiple (LCM) of 7500 and 901 is 6757500 and Greatest Common Divisor (GCD) of 7500 and 901 is 1. -
Example 3: Find if 2, 3, 60, 75, 1500, 1759, 2500 and 7500 are factors of 7500.
Solution:
When we divide 7500 by 1759 it leaves a remainder. Therefore, the number 1759 is not a factor of 7500. All numbers except 1759 are factors of 7500.
-
Example 4: Find the product of all the prime factors of 7500.
Solution:
Since, the prime factors of 7500 are 2, 3, 5. Therefore, the product of prime factors = 2 × 3 × 5 = 30.
FAQs on Factors of 7500
What are the Factors of 7500?
The factors of 7500 are 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 25, 30, 50, 60, 75, 100, 125, 150, 250, 300, 375, 500, 625, 750, 1250, 1500, 1875, 2500, 3750, 7500 and its negative factors are -1, -2, -3, -4, -5, -6, -10, -12, -15, -20, -25, -30, -50, -60, -75, -100, -125, -150, -250, -300, -375, -500, -625, -750, -1250, -1500, -1875, -2500, -3750, -7500.
What is the Sum of Factors of 7500?
Sum of all factors of 7500 = (22 + 1 - 1)/(2 - 1) × (31 + 1 - 1)/(3 - 1) × (54 + 1 - 1)/(5 - 1) = 21868
What numbers are the Pair Factors of 7500?
The pair factors of 7500 are (1, 7500), (2, 3750), (3, 2500), (4, 1875), (5, 1500), (6, 1250), (10, 750), (12, 625), (15, 500), (20, 375), (25, 300), (30, 250), (50, 150), (60, 125), (75, 100).
What is the Greatest Common Factor of 7500 and 4459?
The factors of 7500 are 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 25, 30, 50, 60, 75, 100, 125, 150, 250, 300, 375, 500, 625, 750, 1250, 1500, 1875, 2500, 3750, 7500 and the factors of 4459 are 1, 7, 13, 49, 91, 343, 637, 4459. 7500 and 4459 have only one common factor which is 1. This implies that 7500 and 4459 are co-prime.
Hence, the Greatest Common Factor (GCF) of 7500 and 4459 is 1.
How Many Factors of 7500 are also common to the Factors of 4420?
Since, the factors of 7500 are 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 25, 30, 50, 60, 75, 100, 125, 150, 250, 300, 375, 500, 625, 750, 1250, 1500, 1875, 2500, 3750, 7500 and the factors of 4420 are 1, 2, 4, 5, 10, 13, 17, 20, 26, 34, 52, 65, 68, 85, 130, 170, 221, 260, 340, 442, 884, 1105, 2210, 4420.
Hence, [1, 2, 4, 5, 10, 20] are the common factors of 7500 and 4420.
visual curriculum