Without actually calculating the cubes, find the value of 48³ - 30³ - 18³
Solution:
Given, 48³ - 30³ - 18³
We have to find the value of 48³ - 30³ - 18³ without actually calculating the cubes.
We know that x³ + y³ + z³ - 3xyz = (x + y + z) (x² + y² + z² - xy - yz - zx)
If x + y + z = 0, then x³ + y³ + z³ - 3xyz = 0 (or) x³ + y³ + z³ = 3xyz.
Here, x = 48; y = -30; z = -18
x + y + z = 48 - 30 - 18
= 48 - 48
= 0
x + y + z = 0
So, x³ + y³ + z³ = 3xyz.
48³ - 30³ - 18³ = 3(48)(-30)(-18)
= 144(540)
= 77760
Therefore, 48³ - 30³ - 18³ = 77760
✦ Try This: Without actually calculating the cubes, find the value of 47³ - 31³ - 16³
☛ Also Check: NCERT Solutions for Class 9 Maths Chapter 2
NCERT Exemplar Class 9 Maths Exercise 2.3 Sample Problem 3(i)
Without actually calculating the cubes, find the value of 48³ - 30³ - 18³.
Summary:
Without actually calculating the cubes, the value of 48³ - 30³ - 18³ is 77760
☛ Related Questions:
visual curriculum