Which of the following can be four interior angles of a quadrilateral?
(a) 140°, 40°, 20°, 160°
(b) 270°, 150°, 30°, 20°
(c) 40°, 70°, 90°, 60°
(d) 110°, 40°, 30°, 180°
Solution:
We have to find the four interior angles of a quadrilateral from the given options.
We know that the sum of the angles of a quadrilateral is equal to 360 degrees.
(i) 140°, 40°, 20°, 160°
Sum of angles = 140° + 40° + 20° + 160°
= 200° + 160°
= 360°
Therefore, option a can be four interior angles of a quadrilateral.
(ii) 270°, 150°, 30°, 20°
Sum of angles = 270° + 150° + 30° + 20°
= 270° + 200°
= 470°
Therefore, option b cannot be four interior angles of a quadrilateral.
(iii) 40°, 70°, 90°, 60°
Sum of angles = 40° + 70° + 90° + 60°
= 110° + 150°
= 260°
Therefore, option c cannot be four interior angles of a quadrilateral.
(iv) 110°, 40°, 30°, 180°
Sum of angles = 110° + 40° + 30° + 180°
= 180° + 200°
= 380°
Therefore, option d cannot be four interior angles of a quadrilateral.
✦ Try This: Which of the following can be four interior angles of a quadrilateral? (a) 110°, 50°, 30°, 170° (b) 270°, 150°, 30°, 20° (c) 40°, 70°, 90°, 60° (d) 110°, 40°, 30°, 180°
☛ Also Check: NCERT Solutions for Class 8 Maths
NCERT Exemplar Class 8 Maths Chapter 5 Problem 38
Which of the following can be four interior angles of a quadrilateral? (a) 140°, 40°, 20°, 160° (b) 270°, 150°, 30°, 20° (c) 40°, 70°, 90°, 60° (d) 110°, 40°, 30°, 180°
Summary:
140°, 40°, 20°, 160° can be four interior angles of a quadrilateral.
☛ Related Questions:
- The sum of angles of a concave quadrilateral is (a) more than 360° (b) less than 360° (c) equal to 3 . . . .
- Which of the following can never be the measure of exterior angle of a regular polygon? (a) 22° (b) . . . .
- In the figure, BEST is a rhombus, Then the value of y - x is (a) 40° (b) 50° (c) 20° (d) 10°
visual curriculum