The value of the expression [cosec (75° + θ) – sec (15° – θ) – tan (55° + θ) + cot (35° – θ)] is
a. -1
b. 0
c. 1
d. 3/2
Solution:
We have to find the value of the expression [cosec (75° + θ) - sec (15° - θ) - tan (55° + θ) + cot (35° - θ)]
We know that cosec A = sec (90° - A)
Also, cot A = tan (90° - A)
Now, cosec (75° + θ) = sec (90° - (75° + θ))
= sec (15° - θ)
cot (35° - θ) = tan (90° - (35° - θ))
= tan (55°+ θ)
So, [cosec (75° + θ) - sec (15° - θ) - tan (55° + θ) + cot (35° - θ)]
= [sec (15° + θ) - sec (15° - θ) - tan (55° + θ) + tan (55° + θ)]
= 0
Therefore, the value of the expression [cosec (75° + θ) - sec (15° - θ) - tan (55° + θ) + cot (35° - θ)] is zero.
✦ Try This: Prove that tan (55° - θ) - cot (35° + θ) = 0
LHS = tan (55° - θ) - cot (35° + θ)
We can write
cot A = tan (90° - A)
= tan (90° - (35° + θ)) - cot (35° + θ)
= cot (35° + θ) - cot (35° + θ)
= 0
= RHS
Therefore, it is proved.
☛ Also Check: NCERT Solutions for Class 10 Maths Chapter 8
NCERT Exemplar Class 10 Maths Exercise 8.1 Problem 3
The value of the expression [cosec (75° + θ) – sec (15° – θ) – tan (55° + θ) + cot (35° – θ)] is a. -1, b. 0, c. 1, d. 3/2
Summary:
The value of the expression [cosec (75° + θ) – sec (15° – θ) – tan (55° + θ) + cot (35° – θ)] is zero
☛ Related Questions:
visual curriculum