The value of (tan1° tan2° tan3° ... tan89°) is
a. 0
b. 1
c. 2
d. 1/2
Solution:
We have to find the value of (tan1° tan2° tan3° ... tan89°)
Using the trigonometric ratios of complementary angles,
tan (90° - A) = cot A
The expression can be written as
(tan1° tan2° tan3° ... tan 44°) × tan 45° × (tan(90°- 44°) tan(90°- 43°) tan (90°- 42°) ... tan(90°- 1°))
= (tan1° tan2° tan3° ... tan 44°) × tan 45° × (cot44° cot 43° cot42°……..cot1°)
We know that tan A × cot A = 1
So, (tan1° × cot1°) × (tan2°× cot2°) × (tan3° × cot3°) ×…...tan 45° ×……….(tan44° × cot44°)
= 1 × 1 × 1 × ……………..× 1
= 1
Therefore, the value of (tan1° tan2° tan3° ... tan89°) is 1.
✦ Try This: The value of (cot1° cot 2° cot3° ... cot89°) is
We have to find the value of cot1° cot 2° cot3° ... cot89°
Using the trigonometric ratios of complementary angles,
cot (90° - A) = tan A
The expression can be written as
(cot1° cot2° cot3° ... cot 44°) × cot 45° × (cot(90°-44°) cot(90°- 43°) cot(90°- 42°) ... cot(90°-1°))
= (cot1° cot2° cot3° ... cot44°) × cot45° × (tan44° tan43° tan42°……..tan1°)
We know that tan A × cot A = 1
So, (tan1° × cot1°) × (tan2°× cot2°) × (tan3° × cot3°) ×…...tan 45° ×……….(tan44° × cot44°)
= 1 × 1× 1 × ……………..× 1
= 1
Therefore, the value of (cot1° cot2° cot3° ... cot89°) is 1.
☛ Also Check: NCERT Solutions for Class 10 Maths Chapter 8
NCERT Exemplar Class 10 Maths Exercise 8.1 Problem 6
The value of (tan1° tan2° tan3° ... tan89°) is a. 0, b. 1, c. 2, d. 1/2
Summary:
The value of (tan1° tan2° tan3° ... tan89°) is 1
☛ Related Questions:
visual curriculum