The areas of any two faces of a cuboid are equal. Is the given statement true or false
Solution:
The statement is False.
The diagram below shows the six faces of the cuboid with length L, breadth B and height H.
It is evident from the above diagram that opposite sides of the cuboid are equal in area i.e.
Faces1 & 2; Faces 3 & 4; Faces 1 & 2; and Faces 5 & 6 are equal in areas.
✦ Try This: The surface area of a cuboid of Length L, breadth B and height H is 2(LH + BH + LB). Is the given statement true or false
Refer to the diagram below:
The surface area of the cuboid is given as:
Surface area of the cuboid = Sum of area of faces (1&2, 3&4, 5&6)
Area of faces 1&2 = 2(B × H)
Area of faces 3&4 = 2(L × B)
Area of faces 5&6 = 2(L × H)
Surface Area of the cuboid = 2(B × H) + 2(L × B) + 2(L × H) = 2[BH + LB + LH]
Hence the statement is true.
☛ Also Check: NCERT Solutions for Class 8 Maths Chapter 11
NCERT Exemplar Class 8 Maths Chapter 11 Problem 54
The areas of any two faces of a cuboid are equal. Is the given statement true or false
Summary:
The areas of any two faces of a cuboid are equal is a false statement
☛ Related Questions:
- The surface area of a cuboid formed by joining face to face 3 cubes of side x is 3 times the surface . . . .
- Two cuboids with equal volumes will always have equal surface areas. Is the given statement true or . . . .
- The area of a trapezium become 4 times if its height gets doubled. Is the given statement true or fa . . . .
visual curriculum