sin θ/ (1 + cos θ) + (1 + cos θ)/ sin θ = 2 cosec θ. Prove the following statement
Solution:
LHS = sin θ/ (1 + cos θ) + (1 + cos θ)/ sin θ
By taking LCM we get
= [sin2 θ + (1 + cos θ)2 ]/[sin θ (1 + cos θ)]
Using the algebraic identity
(a + b)2 = a2 + b2 + 2ab
= [sin2 θ + 1 + cos2 θ + 2 cos θ]/ [sin θ (1 + cos θ)]
As sin2 θ + cos2 θ = 1
= [1 + 1 + 2 cos θ]/ [sin θ (1 + cos θ)]
= [2 + 2 cos θ]/ [sin θ (1 + cos θ)]
Taking out the common terms in numerator
= 2[1 + cos θ]/ [sin θ (1 + cos θ)]
So we get
= 2/ sin θ
As 1/sin θ = cosec θ
= 2 cosec θ
= RHS
Therefore, it is proved.
✦ Try This: Prove the following:
(cos θ - sin θ + 1)/ (cos θ + sin θ - 1) = cosec θ + cot θ
☛ Also Check: NCERT Solutions for Class 10 Maths Chapter 8
NCERT Exemplar Class 10 Maths Exercise 8.3 Problem 1
sin θ/ (1 + cos θ) + (1 + cos θ)/ sin θ = 2 cosec θ. Prove the following statement
Summary:
The sine function is written as the ratio of the length of the perpendicular and hypotenuse of the right-angled triangle. It is proved that sin θ/ (1 + cos θ) + (1 + cos θ)/ sin θ = 2 cosec θ
☛ Related Questions:
visual curriculum