Simplify each of the following expressions:
(i) (3 + √3)(2 + √2) (ii) (3 + √3)(3 - √3) (iii) (√5 + √2)² (iv) (√5 - √2)(√5 + √2)
Solution:
(i) (3 + √3)(2 + √2)
By Distributive property, (a + b) (c + d) = ac + ad + bc + bd
(3 + √3)(2 + √2) = 3 × 2 + 3√2 + √3 × 2 + √3 × √2
= 6 + 3√2 + 2√3 + √6
(ii) (3 + √3)(3 - √3)
Using the identity, (a + b) (a - b) = a² - b²
(3 + √3)(3 - √3) = 3² - (√3)²
= 9 - 3
= 6
(iii) (√5 + √2)²
Using the identity, (a + b) ² = a² + 2ab + b²
(√5 + √2)² = (√5)² + (2×√5×√2) + (√2)²
= (5 + 2√10 + 2)
= 7 + 2√10
(iv) (√5 - √2)( √5 + √2)
Using the identity (a + b) (a - b) = a² - b²
(√5 - √2)( √5 + √2) = (√5)² - (√2)²
= 5 - 2
= 3
☛ Check: NCERT Solutions Class 9 Maths Chapter 1 Number Systems
Video Solution:
Simplify each of the following expressions: (i) (3 + √3)(2 + √2) (ii) (3 + √3)(3 - √3) (iii) (√5 + √2)² (iv) (√5 - √2)(√5 + √2)
NCERT Solutions Class 9 Maths Chapter 1 Exercise 1.5 Question 2:
Summary:
Thus, the simplified values of (3 + √3) (2 + √2), (3 + √3) (3 - √3), (√5 + √2)², and (√5 - √2) (√5 + √2) are 6 + 3√2 + 2√3 + √6, 6, 7 + 2√10 and 3 respectively.
☛ Related Questions:
- Recall, π is defined as the ratio of circumference (say c) of a circle to its diameter (say d). That is, π = c/d. This seems to contradict the fact that π is irrational. How will you resolve this contradiction?
- Represent √9.3 on the number line.
- Rationalize the denominators of the following: i) 1/√7 ii) 1/(√7 - √6) iii) 1/(√5 + √2) iv) 1/(√7 - 2)
- Classify the following numbers as rational or irrational: i) 2 - √5 ii) (3 + √23) - √23 iii) 2√7 ÷ 2√7 iv) 1/√2 v) 2π.
visual curriculum